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6j  symbols and 3jm factors for the group chain Dqd 2 D4 3 C4 

L S R K Prasad and K Bharathi 
Department of Applied Mathematics, Andhra University, Waltair, India 

Received 12 April 1979, in final form 9 July 1979 

Abstract. The complete set of 6 j  symbols for the double point groups Ddd and D4 and the 
complete set of 3jm factors associated with the group chain Ddd 3 D4 3 C4 are calculated. 

1. Introduction 

Elementary applications of group theory to a quantum-mechanical system yield 
qualitative information such as the degeneracies of the states of the system and the 
selection rules. To  obtain quantitative information the well known Wigner-Eckart 
theorem (Wybourne 1974) must be applied. A knowledge of coupling coefficients is 
essential for the application of the Wigner-Eckart theorem. 

Racah’s irreducible tensor method, which was developed for systems with Hamil- 
tonians having full spherical symmetry (such as free atoms), was extended by Griffith 
(1962) for application to systems having the lower symmetry characteristic of the 
internal modes of motion of molecules and of the states of ions in solids. Griffith (1962), 
by analogy with Racah’s v, W and X coefficients and Wigner’s 3j, 6 j  and 9 j  symbols, 
obtained the V, W and X coefficients for the octahedral group and its subgroups and 
the dihedral groups, considering only their true representations (also known as single- 
valued representations). Harnung (1973) extended the work of Griffith to the octa- 
hedral spinor group and tabulated the 3 r  symbols for this group. His method has 
revealed symmetries which might otherwise be considered as accidental and has 
facilitated ligand-field calculations. Golding (1973) obtained the V symmetry-coup- 
ling coefficients for the icosahedral double group using the behaviour of a minimum 
number of IJM) ‘ket’ vectors, by analogy with the v coefficients of Racah. These 
coupling coefficients are useful in calculations involving systems such as polyhedral 
conductors and rare-earth double nitrates. Coupling coefficients associated with all the 
thirty-two crystallographic double point groups were tabulated by Koster er a1 (1963), 
taking into consideration the time-inversion operator in addition to the spatial opera- 
tors. Golding and Newmarch (1977) calculated the v coupling coefficients for the 
groups DZ, C: and T” using the fact that they are subgroups of SU(2), the special 
unitary group in two dimensions, and the earlier method of Golding (1973). 

Butler (1975) extended the irreducible tensor theory for arbitrary compact Lie 
groups (finite or continuous), and their subgroup chains. Butler and Wybourne (1976a) 
developed a systematic recursive method of computing 6 j  symbols and 3jm factors in a 
group-subgroup chain. Butler (1976) applied this method to SO3 and was able to 
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rederive all the standard results pertaining to this group. Butler and Wybourne (1976b) 
applied this recursive method to compute the 6 j  symbols and 3jrn factors that arise in 
the group-subgroup chain SO3 3 T 3 C3  3 C1. The consideration of a group-subgroup 
chain mainly serves two purposes: it throws light on the structural significance of the 
system under consideration and, if a suitable chain of groups was chosen, it leads to the 
elimination of the multiplicity problem, thereby solving the problem of labelling the 
basis states unambiguously. 

In practical applications it is often necessary to consider the coupling of the product 
of the basis states of three irreducible representations of the symmetry group of the 
system under consideration. This coupling of the products may be performed in various 
possible sequences. The various resultant coupled states are related by unitary trans- 
formations and the elements of these unitary matrices are known as ‘recoupling 
coefficients’. In practical calculations it is desirable to make use of the highly sym- 
metrical 63’ symbol which is related to the recoupling coefficient (Butler 1975, equation 
9.13). Racah’s factorisation lemma states that if the basis states Ihi) are chosen to form 
irreducible spaces of some subgroup 6 of the symmetry group G, then the coupling 
coefficient of the group G factorises into an isoscalar factor (which is independent of 
basis labels) and a coupling coefficient of the subgroup 6. The 3jm factor is related to 
the isoscalar factor (Butler 1975, equation 13.8). 

The 6 j  symbols and 3jm symbols (equivalently the W coefficients and V 
coefficients) are known only for very few non-crystallographic single and double point 
groups (Griffith 1962, Golding 1973, Golding and Newmarch 1977). In this paper, the 
non-crystallographic double point group D4d is taken up and its 6 j  symbols and the 3jm 
factors for the chain D4d 3 D4 3 C4 are completely evaluated following the systematic 
recursive method developed by Butler and Wybourne (1976a). Consideration of this 
chain eliminates completely the multiplicity problem, thereby solving the problem of 
unambiguous labelling of the basis states. In this method the calculation of the 6 j  
symbols and 3jm factors does not require any specific choice of bases for the irreducible 
representations of the groups considered. Their calculation depends entirely on the 
characters of the irreducible representations. The sulphur molecule (Ss) having the 
puckered octagonal structure is a well-known example of a physical system having D4d 
symmetry. For any physical application one only has to choose suitable bases for the 
irreducible representations of the lowest group in the chain, namely C4. Using the 
resulting coupling coefficients of C4 and the 3jm factors for the chains D 4 3 C 4  and 
D4d 3 D4 (calculated in this paper), one calculates the coupling coefficients of the largest 
group in the chain, namely D4d, in a step-by-step fashion. 

In 9 2 we calculate the l j ,  2 j  and 3 j  symbols for the double point groups D4d and D4. 
A set of fundamental 6 j  symbols is calculated, and then a complete set of primitive 6 j  
symbols is obtained for D4d and D4 using the orthogonality and Racah back-coupling 
relations. Using these primitive G j  symbols, all the non-trivial inequivalent 6 j  symbols 
are computed by the recursive method. In 9 3 the 2jm factors for the chain D4d 3 D4 are 
suitably fixed. Using these and the orthogonality rejations and symmetry properties of 
3jm factors, a complete set of primitive 3jm factors is obtained for the chain Ddd 3 D4. 
The complete set of non-trivial inequivalent 3jm factors for the chain D4d 3 D4 is then 
calculated using a recursion relation. In 3 4 the work of § 3 is repeated for the chain 
D4 3 C4. The notation and terminology used in this paper are mostly those of Butler 
and Wybourne (1976a). The character table and the multiplication table for the double 
group Ddd are taken from Herzberg (1966) and for the double groups D4 and C4 we 
took them from Koster et a1 (1963). 
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2. 6 j  symbols for the double groups D 4 d  and D4 

The double point groups D4d and D4 are simply reducible. The symmetric (ri 0{2}) and 
antisymmetric (Ti 0{l2}) terms of the Kronecker squares I‘l’ of the irreducible 
representations (irreps) of D4d and D4 are given respectively in tables 1 and 2. 

+1 
+1 
+1 
+1 
+1 
+1 
+1 
-1 
-1 
-1 
-1 

Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Symplectic 
Symplectic 
Symplectic 
Symplectic 

2 
2 
8 
8 
2 
4 
6 
1 
3 
5 
7 

Table 2. 

Power 

Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Symplectic 
Symplectic 

Merzberg’s (1966) notation for indicating the irreps of D4d is given inside the paren- 
thesis of the first column of table 1. The irreps of a finite group are classified (Butler and 
King 1974) into orthogonal, symplectic or complex by the evaluation of Frobenius- 
Schur invariant Cr (Hamermesh 1962) and we assign the 2 j  symbol dr the value of Cr in 
the first two cases. 

The permutational symmetries of the 3jm symbols (Butler 1975) are given by 

( A d d , )  si.ibic = C {(VIA 1 h ~ A 3 I s r  (A i A 2 A 3 )  r i I i z i 3  
r 

where ‘T’ is a permutation of 1, 2, 3 .  Using the phase convention of Butler (1975), we 
have 

for IT even, 
for IT odd. { ( T ) A l A Z A 3 } r s  = { ~ ~ A 1 A 2 A 3 r ) B r r  

where B ( A l A 2 A 3 r ) = 1 1 .  When two of the three irreps are equal, an inspection of 
symmetrised Kronecker squares reveals that the value of the 3 j  symbol @(AAA’ ,  r )  is 
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equal to +1 or -1 according to whether the rth term of A'" occurs in the symmetric or 
antisymmetric part of the product A x A respectively. As an example, for the group D4d 
we have @(r5r5r2, 1) = -1, (rJJ5, 1) = +1, since r,* = TZ is in the antisymmetric part 
of rs x Ts and r; = Ts is in the symmetric part of Ts x Now we can select a set of l j  
symbols (-l)A such that 

4A = 

and @ ( A A A ' ,  r )  = (-l)h+A+h'+r-l . The remaining 3j symbols, when the three irreps are 
distinct, are calculated from the equation 

h,+A,+A,+r-1 e ( A i A z A 3 , r )  = (-1) 

The groups D4d and D4 are Kronecker multiplicity free and therefore we drop r 
throughout. In the present problem the l j  symbols for D4d are 

k = 1 , 3 , 4 , 6  
( - 1 y - k  = -1, k = 2, 5, 7 [:; k = 8 , 9 , 1 0 , 1 1  

(-1p = -1, k = 2 , 5  [:; k = 6,7 .  

and for D4 are 
k = 1, 3 ,4  

Thus all the l j ,  2 j  and 3j symbols are obtained. 
The spin representation Ts of D4d and r6 of D4 are faithful representations and may 

be chosen as primitive representations (Butler and Wybourne 1976a). The power of a 
representation A is defined as the minimum positive integer 1 such that e x '  2 A or 

I> A where E is the primitive representation. A primitive 6 j  symbol is a 6 j  symbol 
which contains the primitive irrep at least once as one of its irreps, but does not contain 
the scalar representation. The trivial 6 j  symbols, being proportional to the 3 j  symbols, 
are readily determined from equation (17) of Butler and Wybourne (1976a). Using the 
orthogonality and Racah back-coupling relations (Butler and Wybourne 1976a, equa- 
tions (25) and (26)), and systematically increasing the power of the largest irrep, all the 
6 j  primitives are calculated. The free phases of the 6j's are fixed by a subset of 
primitives known as fundamentals (Butler and Wybourne 1976b). The phases of all the 
fundamentals for the groups D4d and D4 are chosen to be + 1  for simplicity. 

Once the set of primitive 6 j  symbols is obtained, the rest are computed recursively 
using the modified form of the generalised Biedenharn-Elliott sum rule (Butler and 
Wybourne 1976a, equation (27)) and the primitives. At this stage no phase freedom 
exists. The complete sets of non-trivial inequivalent 6 j  symbols of D4d and D4 are listed 
in tables 5 and 6 respectively. 

3. 3jm factors for D4d 2 D4 

The branching rules for D4d + D4 are given in table 3. The first step in calculating the 
3jm primitives (Butler and Wybourne 1976a) is to fix the 2jm factors. We choose 

( r l ) v t v l  = (r2)vzrz  = ( r 3 ) v l v l  = (r4)vzv,  = ( r 5 ) v ~ y s  = (r6) 3 3 = (r6174v4 = ( r 7 ) v s v s  

= (r8)v6v6 = (rg)v7v7 = (rlO),, = (r11)y6v6 = +I .  
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Table 3. Branching rules for Ddd 3 D4. Table 4. Branching rules for D4 3 C4. 

D4d D4 

rl Y1 

r2 YZ 
r3 Y1 
r4 YZ 
rs Y s  
r6 Y 3 + Y 4  

r7 YS 

rg Y7 

rlo Y7 

rs Y6 

rl Y6  

D4 c4 

Table 5. Non-trivial inequivalent 6 j  symbols for the group D4d. 

(2 3 412 3 4) = +1 
(2 3 4/5 7 7) = + 2 - l f 2  

(23418 11 11)=-2-”’(234/9 1010)=+2-’f2 
(2 3 4/10 9 9) = -2-l” t(2 3 4/11 8 8) = +2-”* 

(2 3 416 6 6) = + 2 - l f 2  

(2 3 417 S 5) = +2-‘” 

(2 5 512 S 5) = +f 

(2 S 516 5 5) = +f 
(2 5 SI4 7 7) = +f 

(2 5 S / 8  9 9) = -5  
( 2 5 5 / 7 6 6 ) = - f  

(2 5 519 10 10) = +f 
(2 5 5/10 11 11) = -f 
(255111 11 1 1 ) = + f  
(2 6 613 6 6) = +f 
(2 6 6/S 7 7) = +f 
(2 6 6/8 9 9) = -f 

t(2 6 619 8 8) = +f 
(2 6 6/10 8 8) = -1 
(266111 9 9 ) = + f  
(2 7 7/2 7 7 ) =  +f 
(2 7 718 10 10) = +f 
(2 7 719 9 9) = -4 

*(2 7 7/10 8 8) = +f 
(2 7 7/11 8 8) = -; 
(2 8 8/2 8 8) = -5 
( 2 8 8 / 4 1 1 1 1 ) = + f  

t(2 8 8/5 9 9) = +f 
t(2 8 8/6 10 10) = +f 
t(2 8 8/7 11 11) = +f 
(2 9 913 10 10) = +f 
(2 9 915 10 10) = +f 
(2 9 9/7 9 9) = -f 
(2 10 1012 10 10) = +; 

(2 11 11/5 11 11 )=+f  
(2 10 1016 11 11) = +f 

(3 5 714 5 7) = -4 
(3 5 716 S 7) = +f 
(3 5 717 6 6) = +f 
(3  5 718 11 8 ) =  +f 

(2 S 513 7 7) = +t 
(2 5 515 6 6) = +f 
(2 5 516 7 7 )=- f  

t (2  5 5/8 8 8) = +f 
(2 S S/9 8 8) = -f 
(2 5 5/10 9 9) = -5 
(2 5 5/11 10 10) = -4 
(2 6 612 6 6) = +f 
(2 6 614 6 6) = +f 
(2 6 617 7 7) = -f 
(2 6 6/8 10 10) = +f 
( 2 6 6 / 9 1 1  11)=-; 
(2 6 6/10 11 11) = +f 
(266 /11  l o l o ) = - ;  
(2 7 716 7 7) = +f 
( 2 7 7 / 8 l l l l ) = - i  
(2 7 719 11 11) = +f 
(277 /101010)=- f  
(2 7 7/11 9 9) = +f 
(28813 11 11 )=+f  
(2 8 8/S 8 8) = +f 
(2 8 816 9 9) = +f 
(2 8 817 10 10) = +f 
(2 9 9/2 9 9) = +f 

(2 9 9/6 11 11) = +f 
(2991711 1 1 ) = + f  
(2 10 10/7 10 10) = +f 
(2 10 10/5 11 11) = +f 

(2 9 9/4 10 10) = +f 

(2 11 1112 11 l l )=-f  
(3 5 7/3 5 7) = +4 
(3 5 715 6 6) = +f 
(3 5 716 7 5) = -5 
(3 5 7/8 10 9) = -f 

(3 5 719 11 8) = -5 
(3 5 7/10 10 9) = +f 
( 3 5 7 / 1 1 9 1 0 ) = - f  
(3 6 614 6 6) = -f 
(3 6 619 8 11) = +f 
(3  6 6/11 9 10) = +f 
(3 8 11/48 11 )=+f  

t (3  8 1115 11 8) = +f 
(3 8 1116 10 9) = -5 

t (3  8 1117 9 10) = +f 
(3 9 1014 9 10) = +f 
(3 9 1017 10 9) = +f 
(4 5 715 6 6) = +f 
(4 S 7/6 7 5) = +f 

t(4 S 7/8 11 8) = +f 
(4 S 719 9 10) = +f 
(4 5 7/10 8 11)= -4 
(4 5 7/11 8 11) = -i 
(4 6 614 6 6) = +f 
(4 6 6/9 8 11)= +f 
(4 6 6/11 9 10) =-f 
(4 8 1115 10 9) = +f 
(4 8 11/6 9 10) = +f 
(4 8 11/7 8 11) = +f 
(4 9 10/4 9 10) = -f 
(4910 /7109)=- f  
(5 5 6/5 7 6) = +f 

t ( S  5 6/9 8 8) = +f 
(5 S 6/11 9 lo )=+ ;  
(5 6 715 6 7 ) = 0  

f (5  6 718 10 9) = +f 
(5 6 719 9 8) = -4 
(5 6 7/10 8 8) = +f 
(5 6 7/11 8 9 )=  -f 
(5 8 8/S 8 8) = O  

+(S 8 8/6 9 10) = +f 
(5 8 817 11 11) = 0 
(S89 /5109)=- f  

(3 S 719 9 10) = +f 
(3 S 7/108 11)=-f 

t (3  5 7/11 8 11) = +f 
(3 6 613 6 6) = +f 

t (3  6 6/8 9 10) = +f 
( 3 6 6 / 1 0 8  11)=-f 
(3 8 1113 8 11)=-f 
(3 8 11/5 10 9) = +f 
(3 8 1116 9 10) = +f 
( 3 8 1 1 / 7 8 l l ) = + f  
(3 9 1013 9 10) = -5 
(3 9 1015 9 10) = +f 

(4 S 716 5 7) = +f 
(4 5 717 6 6) = -f 

t (4  S 718 10 9) = +f 
(4 S 7/9 11 8) = +f 
(4 5 7/10 10 9) = -f 
(4 5 7/11 9 lo)=+$ 
(4 6 618 9 10) = -f 

t ( 4 6 6 / 1 0 8  11 )=+f  
(4 8 11/4 8 11) = -5 
(4 8 11,’s 11 8) = -4 
(4 8 1116 10 9) = +f 
( 4 8 1 1 / 7 9 1 0 ) = - f  
(4 9 10/5 9 10) = +f 
(5 5 615 5 6) = 0 
(5 S 6/7 7 6) = 0 
(5 5 6/10 8 9) = +f 
(556 /111011)=- f  
(5 6 717 6 7) = +f 
( 5  6 718 11 10) = -f 
( 5 6 7 / 9 1 1  11)=-f  
(5 67/10 10 1 1 ) ~ - f  
( 5 6 7 / 1 1 9 1 0 ) = + f  
(5 8 8 / S  8 9) = -f 

t (5  8 817 10 11) = +f 
(5 8 9/5 8 9) = 0 

(4 s 7/4 s 7) = +f 
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Table 5. (continued). 

( 5  8 916 11 10) ( 5  8 916 8 9) = +: 
( 5  8 9/7 11 10) = O  i(5 8 917 9 l o ) =  +f 
( 5  9 1015 9 1 0 ) = 0  t (5  8917 11 11 )=+f  
( 5  9 10/6 11 11) = -f ( 5  9 10/5 11 10) = -$ 
( 5  9 10/7 10 11) = +f ( 5  9 1017 10 9) = 0 
(51011/51111)=-f  (51011 /51011)=0  
(51111/511 l l ) = O  (51011 /61011)=+f  

--f 

t ( 6 7 7 / 8  l O l l ) = + f  ( 6 7 7 / 6 7 7 ) = 0  
t(6 7 7/10 8 10) = +; 
(6 8 916 8 9) = 0 
(6 8 9/6 11 9) =-) 

(6 7 7/9 9 11) = -5 
i (6  7 7/11 8 9) = +: 

(6 8 916 8 l o ) =  -1 

t(6 8 917 9 11) = +$ 
(6 8 1016 8 10) = 0 
(6 8 10/7 8 10) = +& 
( 6 9 1 1 / 6 9 l l ) = O  
(6 9 1117 9 11)= +f 
(7 8 10/7 8 10) = 0 
(7 8 1017 10 10) = --; 
(7811 /7911)=- f  

(7 10 1017 10 10) = 0 
(7 9 9/7 9 11)= -4 

(6 8 916 11 10) = 0  
(6 8 9/7 11 10) = ++ 
(6 8 1016 11 10) = -5 
(6 8 1017 10 11) = +f 
(6 9 1116 10 11) = -f 
(6 10 11/6 10 l l ) = O  
(7 8 1017 8 11) = -4 
(7 8 1117 8 11) = 0 
(7 9 917 9 9) - 0  
( 7 9 1 1 / 7 9 1 1 ) = 0  

t These 6 j  symbols are fundamentals 

For the group under consideration the Kronecker multiplicities are 1 and hence r l ,  r 2 ,  r3,  and r4 are 
suppressed. The same notation is adapted in table 6. 

Table 6.  Non-trivial inequivalent 6 j  symbols for the group D4. 

(2 3 412 3 4) = +1 

(2 5 512 5 5 )  = +f 

(2 3 415 5 5 )  = +2-’f2 

(2 5 513 5 5 )  = +f 
t(2 3 416 7 7) = +2-‘” (2 3 417 6 6) = -2-l” 

(2 5 514 5 5 ) =  +f 
(2 5 516 7 7) = -f 
(2 5 5/7 7 7) = ++ 
(2 6 613 7 7) = +f 
(2 6 615 6 6) = +f 
(2 7 712 7 7) = -5 
(3 5 513 5 5 )  = 1-4 

t(3 5 5 /66  7) = +f 
(3 6 713 6 7 )=- f  
(3 6 715 6 7) = 
(4 5 514 5 5 )  = +f 
(4 5 517 6 7) = -1 
(4 6 715 6 7) = +$ 
( 5  6 615 6 6) = 0 
( 5  6615 7 7) = O  

t (2  5 5/6 6 6 ) = + f  
(2 5 517 6 6) = -5 
(2 6 6/2 6 6) = -1 
(2 6 6/4 7 7) = +f 

t ( 2  6 615 7 7) =+; 
(2 7 715 7 7) = +4 
(3 5 514 5 5 )  = -3 
(3 5 517 6 7) =+f 
(3 6 714 6 7) = +f 

i ( 3  6 715 7 6) = +f 
?(4 5 516 6 7) = +: 
(4 6 7/4 6 7) = -f 
(4 6 715 7 6) = -4 
( 5  6 615 6 7) = -f 
(5 671.5 6 7 ) - 0  
( 5  7 715 7 7) = 0 ( 5  6 71.5 7 7) = -1 

The trivial 3jm factors follow immediately (Butler and Wybourne 1976a, equation 
(29)) from the equation 

The magnitudes of the primitive 3jm factors are obtained using the orthogonality 
relations (equations (35) and (36 )  of Butler and Wybourne 1976a). Choosing the 
relative phases from the orthogonality relations and systematically increasing the power 
of the largest irrep, we obtain nine independent and two dependent primitive 3jm 
factors of D4d 2 D4. The non-trivial non-primitive inequivalent 3jm factors for D4d 2 
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D4 are calculated recursively using equation (41) of Butler and Wybourne (1976a), 
3jm primitives of D4d 3 D4, and primitive 6 j  symbols of D4d. The complete set of non- 
trivial inequivalent 3jm factors of Ddd 13 D4 is listed in table 7. 

Table 7. Non-trivial inequivalent 3jm factors for D4d 2 D4. 

(2 3 4 /2  1 2) = +1 
( 2  6 612 3 4) = -2- l f2  
(2 8 812 6 6) = +1 
(2 10 10)/2 7 7) = +1 
(3 5 711 5 5 )  = +1 
(3 6 611 4 4) = +2-lf2 
(3 9 1011 7 7 ) = - 1  
(4 6 612 3 4) = +2-'j2 
(4 9 10/2 7.7) = -1 
(5 5 6 /5  5 4) = +2-1'2 
(5 6 715 4 5) = -2  
(5 8 915 6 7) = +1 

(6 7 713 5 5) = -2-ll2 
(6 8 913 6 7) = +2-1'2 
(6 8 10/3 6 7) = +2-lf2 
(6 9 11/3 7 6) = -2-1'2 
(6 10 1113 7 6) = -2-1'2 
17 8 1015 6 7) = +1 
(7 9 915 7 7) = -1 
(7 10 10/5 7 7) = -1 

(5 1 0 1 1 / 5 7 6 ) = - 1  

(2 5 5/2  5 5) = +l  
(2 7 712 5 5 )  = -1 
(2 9 912 7 7) = +1 
(2 11 1112 6 6 )  = +1 
(3 6 6 /1  3 3) = -2-lf2 
(3 8 1 1 / 1 6 6 ) = + 1  
(4 5 712 5 5)  = -1 
(4 8 1112 6 6) = +1 
(5  5 615 5 3) = +2-'j2 
(5 6 715 3 5) = +2-1'2 
(5  8 8/5 6 6) = +1 
(5 9 10/5 7 7) =+1 
(511  1 1 / 5 6 6 ) = + 1  
(6 7 714 5 5) = -2-'12 
(6 8 914 6 7) = +2-'12 
(6 8 10/4 6 7) = -2-lf2 
(6 9 1114 7 6) = +2-'12 
(6 10 1114 7 6) = -2-*'2 
(7 8 1115 6 6 ) = + 1  
(7 9 1115 7 6) = -1 

Note that 

where a, b and c are the branching multiplicities of yl, y,% and y,,. The group under 
consideration is branching multiplicity free and hence a,  b and c are suppressed. The same 
notation is adapted in table 8. 

4. 3jm factors for D4 1 C4 

The branching rules for D4 + C4 are given in table 4. Choosing 

( r l ) y l y ~  = ( ~ 3 ) y ~ y 2 = ( T ' 1 S ) y 3 y 4 = ( r 6 ) ~ 5 ~ 6 =  ( r 7 ) ~ 7 ~ 8 = + 1  

and 

(r2)ylyl = (r4)y2y2 = -1, 

equation (31) of Butler and Wybourne (1976a) gives 

(rs )Ydy3 = + I ,  (r6) Y ~ Y S  = (r7) m y 7  = -1 > 

where we have used the 2 j  symbols of the groups D4 and Cq. For Abelian groups all 
irreps are orthogonal or quasi-orthogonal (Butler and Wybourne 1976a), giving 
q5yk = +l. Here refers to irreps of D4 and y refers to irreps of C4. Certain 2jm factors 
are chosen to be -1 to make all the 3jm factors real. Proceeding as in 8 3 we obtain four 
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independent and one dependent 3jm primitives. The 6 j  symbols of C4 may be taken to 
be +1. The complete set of non-trivial inequivalent 3jm factors of D4 3 C4 is listed in 
table 8 .  

Table 8. Non-trivial inequivalent 3jm factors for D4 3 C4. 

(2 3 4 / 1 2  2) =-1 
(2 5 511 3 4) = +2-l” 

(3 5 512 3 3) = +2-”* 

(4 5 512 3 3) = +2-’12 

(2 6 6 /1  5 6) = +2-”’ 
(2 7 711 7 8) = +2-‘12 

(3 6 7 /2  5 8) = +2-’” 

(4 6 712 5 8) = +2-’/’ 
(5 6 613 6 6) = +2-’12 
(5 6 713 5 7) = +2-’” 
(5 7 713 8 8) = +2-”’ 
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